The dynamic nature of biological processes has long been difficult to document, as researchers have been limited to static studies based on fixed specimens. Methods like immunocytochemistry or in situ hybridization can only provide accurate information on one organism at one particular time point. As Scott Fraser has remarked, it’s akin to trying to figure out the rules of football from looking at a set of still photographs taken during a game. But recent developments in imaging techniques, particularly the use of Green Fluorescent Protein (GFP) and its variants, have provided nondestructive ways to study dynamic processes over time, taking our understanding into the fourth dimension.

These new imaging techniques generate an enormous amount of digital image data, which can be difficult to cope with as it builds up over time. Computer-based image analysis is required for the extraction of reproducible and quantitative information. Previously, Cold Spring Harbor Protocols has featured Khuloud Jaqaman and Gaudenz Danuser’s case study using particle tracking to study cellular dynamics. In the June issue of the journal, Roland Eils and colleagues present Tracking and Quantitative Analysis of Dynamic Movements of Cells and Particles. The article sketches a general workflow for quantitative analysis of live cell images and details automated methods for image analysis including preprocessing, segmentation, registration, tracking and classification.