Live cell imaging techniques are driving a revolution in biological research. Instead of viewing dead tissues and cells fixed at a particular stage of activity, scientists can now visualize dynamic changes as they happen, permitting a better understanding of complete processes. The revolution has been fueled by the implementation of genetically encoded fluorescent proteins, the subject of the 2008 Nobel Prize in Chemistry.

The diverse array of applications benefiting from fluorescent proteins ranges from markers targeted at organelles and protein fusions designed to monitor intracellular dynamics to reporters of transcriptional regulation and in vivo probes for whole-body imaging and detection of cancer. Fluorescent proteins have enabled the creation of highly specific biosensors to monitor a wide range of intracellular phenomena, including pH and metal-ion concentration, protein kinase activity, apoptosis, membrane voltage, cyclic nucleotide signaling, and tracing neuronal pathways. In the December issue of Cold Spring Harbor Protocols, David Piston and colleagues present Fluorescent Protein Tracking and Detection: Fluorescent Protein Structure and Color Variants, a comprehensive overview of the wide variety of fluorescent proteins that are currently available. The article features more than twenty movies of different fluorescent proteins in action and is a great primer for planning imaging experiments. As one of December’s featured articles, it is freely available to subscribers and non-subscribers alike.

In addition, the same authors have also contributed Fluorescent Protein Tracking and Detection: Applications Using Fluorescent Proteins in Living Cells. This article provides some general tips for the practical aspects of using and imaging enhanced green fluorescent protein (EGFP) and newer members of the color palette, as well as quantitative imaging of fluorescent proteins and imaging of several fluorescent proteins at the same time. Finally, an overview is provided for the different types of biosensors that have been derived from flourescent proteins.

Both articles are adapted from the spectacular new manual, Live Cell Imaging: A Laboratory Manual, Second Edition which is due out by month’s end.

CSH Protocols December Cover

CSH Protocols December Cover